Description of the System Developed by Team
Athene in the FNC-1

Andreas Hanselowski, Avinesh PVS, Benjamin Schiller, Felix Caspelherr
UKP-Lab, TU-Darmstadt, Germany

June 15, 2017

1 System installation:

The code can be downloaded from github: athene system
Details of the required packages and installation are described in the README.md
In order to be able to reproduce our last submission for the FNC-1 competition
from June second 2017, the serialized model and the features must be down-
loaded from google drive and placed in the corresponding folders.
For this purpose,
= unzip models.zip athene_system/fnc-1/data/fnc-1/mlp-models
= unzip features.zip athene_system/fnc-1/data/fnc-1/features
Moreover, in order to be able exactly reproduce our submission, the system
configuration should be the same as it is described in the README.md. In

particular, one should use python 3.4 and tensorflow 0.9.0 (GPU version). Any
other configuration might lead to different results.

2 How to run the system:

In order to run the system, the file pipeline.py in the directory athene_system,/fnc-
1/fnc must be executed.

= python pipeline.py -p ftest
For more details:

= python pipeline.py --help

https://github.com/hanselowski/athene_system.git
https://drive.google.com/drive/folders/0B0-muIdcdTp7cUhVdFFqRHpEcVk?usp=sharing

= python pipeline.py -p crossv holdout ftrain ftest
crossv: Runs 10-fold cross validation on train/validation set
holdout: Trains classifier on train and validation, tests it on holdout set
ftrain: Trains classifier on the whole dataset and saves it to data/fnc-1/mlp-models

ftest: Predicts stances of unlabeled test set based on the model

The resulting file with the predicted labels is stored in athene_system/fnc-
1/data/fnc-1/fnc-results.

To reproduce the last submission from June 2.

= python pipeline.py -p ftest
The serialized features and model are loaded, and the predictions are made on
the official testing set provided on June 1. The predictions must exactly corre-
spond to the submission on June 2.
To Train the model and predict on the testing set

= python pipeline.py -p ftrain ftest
In this setting, the serialized features are loaded, the model is retrained and the
predictions are made on the official testing set provided on June 1. Since the
weights are initialized differently, there might be some variance to that of our
official submission.

To generate features, train the model and predict on the testing set

Delete all the features from the directory athene_system/data/fnc-1/features
and retrain the system as mentioned above.

= rm -rf athene_system/data/fnc-1/features/*
= python pipeline.py -p ftrain ftest

In this setting, the serialized features are recalculated and the model is retrained.
Finally, the predictions are made on the official testing set provided on June 1.

3 Architecture of the multilayer peceptron

agree disagree discuss unrelated

[[[[|
Softmax

|

2 3 4 5 6 7 241 242 243 244 245 246

Hiden Layer with ReLu

|
|

2 3 4 5 6 7 357 358 359 360 361 362

Hiden Layer with ReLu

|

Concatinated feature vector

|

1 2 om 1 2 o 1 2 o
| I I I | | [I [| C T 1T 1T 1]
Body feature vector Joint feature vector Head feature vector

4 Approach

1. As a baseline, we used the multilayer perceptron with bag-of-words fea-
tures, as suggested by [].

2. In order to optimize the hyper parameters, we carried out a random search
[]. The structure of the resulting multilayer
perceptron is displayed in Section (3).

3. In addition to the bag-of-words features, the following features have been
implemented: FNC-1 baseline features, topic models and features for
stance detection as suggested in |]

4. Depending on the feature type, either individual feature vectors for the
article body and the headline are created and then concatenated, or a
joint feature vector. Both types of input features vectors to the multilayer
perceptron are illustrated in Section (3).

5. Some of the features require a vocabulary, which has been generated on
the basis of the training set, development set, holdout data and the official
testing set from June 1.

6. In order to further improve performance, an ensemble method consisting
of 5 multilayer perceptrons has been used, whereby the labels have been
predicted by hard voting.

7. The model has been trained on the basis of the training set, development
set and the holdout data, in order to make prediction for the official testing
set from June 1.

5 Detailed description of the approach

The system setting described in the following resulted from a large number
of experiments and the validation of the performance using the 10-fold cross-
validation provided with the baseline code. In the final weeks of the challenge,
the performance has also been tested on the holdout data, which yielded similar
results as the cross-validation. All changes, which have been made to the model,
turned out to improve performance even if only to a small extend.

In the following, the model and the used features are discussed in a little more
detail.

Multilayer perceptron (after the hyper parameter optimization of the model
described in | D:

1. Number of layers: 7
2. Number of unit per layer: 362, 942, 1071, 870, 318, 912, 247

3. Configurations: Learning rate = 0.001, Bach size = 188, number of epochs
= 70, optimizer = Adam, learning rate decay = on, keep_prob_const =
1.0, weight initialization = sqrt_n, bias initialization = 0.001, activation
function = relu

Features:

1. Baseline features:

Original features from the fnc-1 baselines: overlap, refuting, polarity, hand
Keys in python: overlap, refuting, polarity, hand

2. Bag-of-words unigram features:

Description: Simple bag of words n-gram features represented by a vector,
whereby the entries represent the frequency of the n-gram (length 5000
head + 5000 body). Concatenation of head and body, 12 norm and bleed-
ing (BoW = train+development+holdout+unlabeled test set)

Feature type: concatenated feature vector

Configurations: Vectorizer = tf-idf, stop words removal = on, vector length
= 5000, use idf = off, norm = L2

Key in python: word ngrams_concat_tf£5000.12_w_holdout_and_test

3. Non-negative matrix factorization cosine distance:

Description: Implements non negative matrix factorization. Calculates
the cosine distance between the resulting head and body topic models
vectors.

Feature type: joint feature vector

Configurations: Vectorizer = tf-idf, stop words removal = on, vector length
= 5000, use idf = off, norm = L2

Key in python: NMF_fit_all_incl holdout_and test

4. Non-negative matrix factorization concatenated:

Description: Implements non negative matrix factorization. The topic
model vectors of the headline and the body are concatenated.

Feature type: concatenated feature vector

Configurations: number of topics = 300, vocabulary based on: train, de-
velopment, hold out, official test data set

Key in python: NMF_fit_all_concat_300_and_test

5. Latent Dirichlet Allocation:

Description: Sklearn LDA implementation based on the 5000 most im-

portant words (based on train+test+holdout+ unlabeled test data’s term

freq =; bleeding). Returns feature vector of cosine distances between the

topic models of headline and bodies.

Feature type: joint feature vector

Configurations: n_topics=25, use_idf=False, term_freq=True

Key in python: latent_dirichlet_allocation_incl_holdout_and_test
6. Latent Semantic Indexing:

Description: Takes all the data (holdout+test+train) and interpreters the

headlines and bodies as different documents. Instead of combining them,
they are appended. Then it tokenizes these 50k headline-docs and 50k
body-docs, builds a Tfidf-Matrix out of them and creates a LSI-Model out
of it. In the next step the headlines and bodies for the feature genera-
tion are also treated as different documents and merely appended. Also,
they are tokenized and a Tfifd-Matrix is built. This matrix is passed to
the learned LSI-Model and a Matrix is being returned. In this matrix,
each document is represented as a vector with length(topics) of (topic-id,
distance of this doc to the topic). The probabilities are then taken as a
feature vector for the document. The first half of the matrix represent
the headline docs, the latter half represent the body docs. In the end, the
feature vectors of the headlines get concatenated with its body feature
vector.

Feature type: concatenated feature vector Configurations: n_topics=300

Key in python: latent_semantic_indexing gensim holdout_and test

Word similarity:

Description: Comparison of the embeddings of the nouns and verbs of the
headline and the body (motivated by paraphrase detection).

Feature type: concatenated feature vector

Configurations: -

Key in python: stanford wordsim_lsent

Ensemble modeling:

1.
2.
3.

Approach: Voting
Voting type: hard

Number of models 5 (multilayer perceptrons described above randomly
initialized)

References

[Bergstra and Bengio(2012)] James Bergstra and Yoshua Bengio. 2012. Ran-
dom search for hyper-parameter optimization. Journal of Machine Learning

Research 13(Feb):281-305.

[Davis and Proctor(2017)] Richard Davis and Chris Proctor. 2017. Fake news,
real consequences: Recruiting neural networks for the fight against fake news

[Ferreira and Vlachos(2016)] William Ferreira and Andreas Vlachos. 2016.
Emergent: a novel data-set for stance classification. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies. ACL.

	System installation:
	How to run the system:
	Architecture of the multilayer peceptron
	Approach
	Detailed description of the approach

