
UCL Machine Reading — FNC-1 Submission

Benjamin Riedel
benjamin.riedel.09@ucl.ac.uk

Isabelle Augenstein
i.augenstein@ucl.ac.uk

George Spithourakis
g.spithourakis@cs.ucl.ac.uk

Sebastian Riedel
s.riedel@ucl.ac.uk

June 2017

Summary

The stance detection model submitted for stage number 1 of the Fake News
Challenge (FNC-1) is a single, end-to-end system consisting of lexical as well as
similarity features fed through a multi-layer perceptron (MLP) with one hidden
layer.

Although relatively simple in nature, the model appears to perform on par
with more elaborate, ensemble-based systems submitted.

Features

The features extracted consist of three overarching elements only:

• A bag-of-words term frequency (BoW-TF) vector of the headline

• A BoW-TF vector of the body

• The cosine similarity of term frequency-inverse document frequency (TF-
IDF) vectors of the headline and body

Tokenization is performed by the standard scikit-learn tokenizer as part
of applying CountVectorizer, TfidfTransformer and/or TfidfVectorizer.

The bag-of-words (BoW) used to calculate the term frequency vectors is
based on the vocabulary of the training set, excluding a specified set of stop
words and limited to a total of 5,000 most frequent words. The set of stop
words consists of a subset of the standard scikit-learn stop word list for the
English language.

For the TF-IDF vectors of the headline and body in the cosine similarity
calculations, the BoW is based on the vocabulary of both the train and the test
set. All other parameters used in the corresponding scikit-learn vectorizer
are identical to those described for the term frequency vectors.

1



These three overarching elements are concatenated in a feature vector of
total size 10,001 which is fed into the classifier.

Classifier

The classifier is a MLP with one hidden layer of 100 units with rectified
linear unit (ReLU) activation.

Prediction is based on the argmax of the softmax on the output of the final
layer.

Figure: Schematic diagram of model

2



Training

The loss minimized during training was the sum of the L2 loss calculated on
the MLP weights and the sparse softmax cross entropy between the logits and
the labels.

Optimization was carried out using Adam and gradient clipping by a global
norm clip ratio.

Moreover, the setup was regularized using a dropout on the output of both
perceptron layers.

Batch training was thus performed on the entire training set and stopped
early.

The criterion used for early-stopping was a qualitative combination of the
plateau of the loss on the training set and mean performance of the model on
50 random splits of the data into training and hold-out sets as defined in the
official baseline setup.

Hyperparameters

The hyperparameters of the model were optimized during development using
random search on a grid of combinations and (cross-validation on) various splits
of the data.

The full set of hyperparameter labels, their description, the range of values
considered and corresponding optimized values are provided below.

Label Description Range Optimized
lim unigram BoW vocabulary size 1,000 - 10,000 5,000
hidden size MLP hidden layer size 50 - 600 100
train keep prob 1 - dropout on MLP layers 0.5 - 1.0 0.6
l2 alpha Alpha level in L2 loss 0.1 - 0.0000001 0.0001
learn rate Learning rate of Adam 0.1 - 0.001 0.01
clip ratio Global norm clip ratio 1 - 10 5
batch size Size of training batch 250 - 1,000 500
epochs Number of training epochs ≤ 1, 000 90

Table: Hyperparameter details

Reproducibility

Rather than providing seed values and requiring the model to be retrained,
the public GitHub repository provided contains relevant scripts and the TensorFlow
model trained as part of the submission.

The submission can easily be reproduced by loading this model using the
pred.py script to make the predictions on the relevant test set.

3



Alternatively, as suggested by the organizers of the competition, the validity
of the submission can be checked by also using the pred.py script to train the
model with different seeds and evaluating the mean performance of the system.

Getting started

To get started, simply download the files in the public GitHub repository
provided to a local directory.

Prerequisites

The model was developed, trained and tested using the following:

• Python==3.5.2

• NumPy==1.11.3

• scikit-learn==0.18.1

• TensorFlow==0.12.1

Please note that compatibility of the saved model with newer versions of
TensorFlow has not been checked. Accordingly, please use the TensorFlow

version listed above.

Installing

Other than ensuring the dependencies are in place, no separate installation
is required.

Simply execute the pred.py file once the GitHub repository has been saved
locally.

Reproducing the submission

The pred.py script can be run in two different modes: ‘load’ or ‘train’.
Upon running the pred.py file, the user is requested to input the desired mode.

Execution of the pred.py file in ‘load’ mode entails the following:

• The train set will be loaded from train stances.csv and train bodies.csv

using the corresponding FNCData class defined in util.py.

• The test set will be loaded from test stances unlabeled.csv and train bodies.csv

using the same FNCData class. Please note that test stances unlabeled.csv

corresponds to the second, amended release of the file.

• The train and test sets are then respectively processed by the pipeline train

and pipeline test functions defined in util.py.

4



• The TensorFlow model saved in the model directory is then loaded in place
of the model definition in pred.py. The associated load model function
can be found in util.py.

• The model is then used to predict the labels on the processed test set.

• The predictions are then saved in a predictions test.csv file in the
top level of the local directory. The corresponding save predictions

function is defined in util.py. The predictions made are equivalent to
those submitted during the competition.

Execution of the pred.py file in ‘train’ mode encompasses steps identical to
those outlined above with the exception of the model being trained as opposed
to loaded from file. In this case, the predictions will obviously not be identical
to those submitted during the competition.

The file name for the predictions can be changed in section ‘Set file names’
at the top of pred.py, if required.

Please note that the predictions are saved in chronological order with re-
spect to the test stances unlabeled.csv file, however, only the predictions
are saved and not combined with the Headline and Body ID fields of the source
file.

5


